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Linear stability and weak nonlinear theories are used to investigate analytically the
Coriolis effect on three-dimensional gravity-driven convection in a rotating porous
layer heated from below. Major differences as well as similarities with the
corresponding problem in pure fluids (non-porous domains) are particularly
highlighted. As such, it is found that, in contrast to the problem in pure fluids,
overstable convection in porous media is not limited to a particular domain of Prandtl
number values (in pure fluids the necessary condition is Pr! 1). Moreover, it is also
established that in the porous-media problem the critical wavenumber in the plane
containing the streamlines for stationary convection is not identical to the critical
wavenumber associated with convection without rotation, and is therefore not
independent of rotation, a result which is quite distinct from the corresponding pure-
fluids problem. Nevertheless it is evident that in porous media, just as in the case of
pure fluids subject to rotation and heated from below, the viscosity at high rotation
rates has a destabilizing effect on the onset of stationary convection, i.e. the higher the
viscosity the less stable the fluid. Finite-amplitude results obtained by using a weak
nonlinear analysis provide differential equations for the amplitude, corresponding to
both stationary and overstable convection. These amplitude equations permit one to
identify from the post-transient conditions that the fluid is subject to a pitchfork
bifurcation in the stationary convection case and to a Hopf bifurcation associated with
the overstable convection. Heat transfer results were evaluated from the amplitude
solution and are presented in terms of Nusselt number for both stationary and
overstable convection. They show that rotation has in general a retarding effect on
convective heat transfer, except for a narrow region of small values of the parameter
containing the Prandtl number where rotation enhances the heat transfer associated
with overstable convection.

1. Introduction

The study of natural convection in rotating porous media is motivated both
theoretically and by its practical applications in engineering. Among the applications
in engineering disciplines one can find the food process industry, chemical process
industry, solidification and centrifugal casting of metals and rotating machinery. More
detailed discussions of applications of natural convection in porous media and
particularly in rotating porous domains are presented by Nield & Bejan (1992), Bejan
(1995) in comprehensive reviews of the fundamentals of heat convection in porous
media, and by Vadasz (1996a).

Since it is intended to compare in this paper results for convection in rotating porous
media with the corresponding results in pure fluids (non-porous domains) a brief
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introduction of the relevant terminology pertaining to porous media is presented in
order to highlight the differences between the two. The equations governing the flow
and heat transfer in porous media can be obtained via an averaging procedure of the
Navier–Stokes and energy equations over a representative elementary volume (REV).
As a result, the filtration velocity applicable at the macroscopic (i.e. post-averaged)
level replaces the micro-level pore-scale velocity and a set of new parameters is
introduced such as porosity, which appears as the ratio of the pore volume to the
volume of the porous matrix, and permeability which is a property describing the
ability of the porous matrix to allow fluid flow. The resulting averaged equations
include a pressure gradient term and a Darcy term, the latter being proportional to the
filtration velocity, V, and representing the viscous forces between the fluid and the solid
phases in the porous medium. An additional (Brinkman) term, proportional to ~#V,
appears in the averaged equations representing at the macroscopic level the viscous
forces between fluid particles at the pore scale, and is typically very small, i.e. O(Da)
(here Da is the Darcy number which is usually much smaller than unity, see definition
later). There are of course additional terms, which in different circumstances can
become significant, otherwise they are neglected.

Previous studies of free convection due to thermal buoyancy resulting from the
centrifugal body force (while the gravity effect on buoyancy was neglected) deal with
cases of different orientation of the temperature gradient with respect to the centrifugal
force. Vadasz (1993, 1995) presented analytical solutions to the three-dimensional free-
convection problem in a long rotating porous box for the case when the temperature
gradient resulting from the imposed conditions on the boundaries is perpendicular to
the centrifugal body force. The analysis focused on the effect of the Coriolis force on
the basic free convection, resulting in secondary circulation in a plane perpendicular to
the leading free-convection plane. Studies of centrifugally driven free convection with
temperature gradients collinear with the centrifugal body force are limited to linear
stability results. Vadasz (1994, 1996a) presented the stability of centrifugally driven
free convection for porous layers adjacent to the axis of rotation and placed an
arbitrary positive distance from the axis of rotation, respectively. Linear stability
results for convection in a rotating porous layer subject to alternating direction of the
centrifugal body force, a case of relevance when the axis of rotation falls within the
boundaries of the porous domain, were presented by Vadasz (1996b).

The Coriolis effect on gra�ity-driven convection in porous media was investigated by
Friedrich (1983), Jou & Liaw (1987a, b), Patil & Vaidyanathan (1983) and Palm &
Tyvand (1984) for a single fluid and by Rudraiah, Shivakumara & Friedrich (1986) for
a binary mixture. All these studies except Palm & Tyvand (1984) considered a porous
medium model, which included the Brinkman term and}or a convective inertia term.
Therefore, their governing equations were in principle similar to the Navier–Stokes
equations except for an additional Darcy term proportional to the filtration velocity.
Further, Rudraiah et al. (1986) limited their study to ‘sparsely packed porous medium’
and spelled out explicitly that the model validity is limited to high porosity and high
permeability which makes it closer to the behaviour of a pure-fluid system (non-porous
domain). It is probably for this reason that Rudraiah et al. (1986) preferred to use the
non-porous-medium definitions for Rayleigh and Taylor numbers, which differ by a
factor of Da and Da#, respectively, from the corresponding definitions for porous
media. It is because of these definitions that they concluded that for small values of Da
the effect of rotation is negligible for Taylor numbers less than 10'. If the porous-media
Taylor number had been used instead, i.e. the proper porous-media scales, then one
could identify significant effects of rotation at porous-media Taylor number values as
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small as 10. Hence, these results are valid provided Da¯O(1), which is applicable for
high-permeability (or sparsely packed) porous layers. Since all previously mentioned
studies, except Palm & Tyvand (1984), used the same porous-medium model, this
conclusion applies to them as well. On the other hand, Palm & Tyvand (1984) used an
unmodified Darcy model (except for the extension to include the Coriolis term) to solve
the linear stability problem of thermal convection in a porous layer subject to rotation.
They discovered an important analogy showing that the onset of stationary convection
in the rotating system is equivalent to the case of convection in an anisotropic porous
layer. However, since they did not include the time-derivative term in the Darcy
equation, they excluded the possibility of overstability (the time-derivative term is
necessary when investigating wave phenomena in porous media).

In this paper an extended Darcy model is used, in the sense that the Darcy equation
includes the time-derivative term which allows eventually for the convection to set in
as overstability too. Brinkman as well as inertial terms are neglected, the first being
significant only at a distance of O(Da"/#) from the solid boundaries and the latter being
negligible in the neighbourhood of the convection threshold, where the amplitude of
the convection is expected to be small. The finite-amplitude results confirm that in the
neighbourhood of the convection threshold the amplitude is proportional to the square
root of the relative distance from the critical Rayleigh number. The nonlinear effects
are present in this model due to the coupling between the Darcy and the energy
equations, the latter including convection nonlinear terms. The objective of the present
investigation is to establish the stability conditions, evaluate the three-dimensional
convective solutions, including finite-amplitude results, and estimate the convective
rate of heat transfer for both stationary and overstable convection in a rotating porous
layer heated from below.

The corresponding results for pure fluids (non-porous domains) were presented by
Chandrasekhar (1961) and Veronis (1958) for the linear stability study, and by Veronis
(1958) for the finite-amplitude investigation. They showed that, in contrast to the
convection problem in non-rotating systems, viscosity has a destabilizing effect on
stationary convection in a rotating system at high rotation rates. The reason for this
result is the tendency of small-viscosity fluids subject to rotation to horizontal two-
dimensionality (i.e. Taylor–Proudman theorem), which is inconsistent with thermal
convection. An additional remarkable result obtained by Veronis (1958) is the fact that
the wavelength of stationary convection rolls measured in the plane containing the
streamlines is independent of rotation, and equals the wavelength corresponding to
convection in absence of rotation. Regarding overstable convection, it was established
that a necessary condition for overstability to be at all possible is that Prandtl number
must be smaller than 1. This condition limits the possible inventory of fluids for which
overstability is a possible mechanism for convection to set in, e.g. water having a
Prandtl number around 7 and silicon oils having much higher Prandtl numbers are all
excluded.

The present study identifies the differences as well as similarities between the porous-
medium and pure-fluids (non-porous domains) convection results and compares them.

2. Problem formulation and governing equations

A horizontal fluid-saturated porous layer subject to rotation is heated from below
as presented in figure 1, where the vertical distance between the top and bottom
boundaries is Hk. The axis of rotation and hence the coordinate system is linked to the
rotating porous matrix and a negative temperature gradient in the vertical direction is
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F 1. A rotating fluid saturated porous layer heated from below.

anticipated as a result of the imposed thermal boundary conditions. Not far (at
distances lki gk}Ω#

$

) from the axis of rotation one can assume the gravity buoyancy
to be dominant and neglect the centrifugal buoyancy, hence limiting the effect of
rotation to the Coriolis acceleration and assuming the centrifugal acceleration to be
constant and absorbed in the reduced pressure term. The Darcy law is extended only
to include the time derivative and Coriolis terms, while the Boussinesq approximation
is applied to account for the effects of the density variations. Subject to these conditions
the following dimensionless set of governing equations for continuity, Darcy and
energy, is obtained:

¡[V¯ 0, (1)

¥V
¥t«

Ta"/# eW
z
¬VV¯®¡pRaTeW

z
, (2)

χ
¥T
¥t«

V[¡T¯~#T. (3)

In equations (1)–(3) the values αk}Hk, µkαk}kk, and ∆T
c
¯ (T

H
®T

C
) are used to scale

the dimensional filtration velocity components (uk, �k,wk), reduced pressure (pk), and
temperature variations (Tk®T

C
), respectively, where αk is the effective thermal

diffusivity including the effect of the ratio between the heat capacity of the fluid and
the effective heat capacity of the porous domain, µk is fluid’s viscosity and kk is the
permeability associated with the porous matrix. The subscripts C and H stand for the
cold and hot end boundaries and the subscript * denote dimensional values. The
symbols V, T and p represent the dimensionless filtration velocity vector, temperature
and reduced pressure, respectively, and eW

z
is a unit vector in the z-direction. The height

of the layer Hk was used for scaling the variables xk, yk and zk. Accordingly, x¯
xk}Hk, y¯ yk}Hk and z¯ zk}Hk. The time variable was scaled initially by using the
value H #

$

}αk, hence t¯ tkαk}H #

$

, and thereafter rescaled for convenience in the form
t«¯χt, where χ is a dimensionless group which includes the Prandtl and Darcy
numbers as well as the porosity of the porous domain and is defined as

χ¯
φPr

Da
. (4)

In equation (4) Pr¯ νk}αk is the Prandtl number, Da¯kk}H #

$

is the Darcy number,
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φ is porosity and νk stands for the kinematic viscosity of the fluid. It is only through
this combined dimensionless group that the Prandtl number affects the flow in porous
media. Hence, while Pr can take values from as small as 10−$ for liquid metals and up
to 10$ for oils, the corresponding values of χ will be magnified by a factor of φ}Da
which is typically a big number, taking values from 10 to 10#!. Therefore the values of
χ can be expected in the range from 10−# to 10#$. Typical values of χ in traditional
porous-media applications are quite big, a fact which provides the justification for
neglecting the time-derivative term in the Darcy equation. However, in circumstances
linked to modern porous-media applications its value can become of a unit order of
magnitude or even smaller, in which case the time derivative term should be retained
(e.g. for Pr¯ 10−$, Da¯ 10−% and φ¯ 0.1 which may be typical values within the
mushy layer in solidification of binary alloys, equation (4) yields χ¯ 1). Smaller values
of φ corresponding to a fractured porous medium or bigger values of Da will
accommodate higher Prandtl numbers or yield smaller values of χ (e.g. Da¯ 10−#i 1,
φ¯ 10−#, Pr¯ 7 yields χ¯ 7). In the present case we keep the time-derivative term
in the equation in order to allow for the possibility of overstable convection and will
observe how the value of χ affects the frequency of overstable solutions. A linear
approximation was assumed for the relationship between the density and temperature,
in the form ρ¯ 1®βT, where β¯βk(T

H
®T

C
) and βk is the thermal expansion

coefficient. The other dimensionless groups which appear in equation (2) are the
porous-media gravity-related Rayleigh number, Ra, and the porous-media Taylor
number, Ta, defined in the form

Ra¯
βk∆T

c
gkHkkk

νkαk
, Ta¯ 02Ωkkk

φνk 1#, (5)

where gk is the gravity acceleration and Ωk is the angular velocity of rotation.
As the top and bottom boundaries are rigid, the solution must follow the

impermeability conditions there, i.e. V[eW
n
¯ 0 on these boundaries, where eW

n
is a unit

vector normal to the boundary. The temperature boundary conditions are : T¯ 1 at
z¯ 0 and T¯ 0 at z¯ 1. The lateral boundaries can be taken at the convection cell
wavelength where V[eW

n
¯ 0 and ¡T[eW

n
¯ 0.

The partial differential equations (1), (2) and (3) form a three-dimensional nonlinear
coupled system which together with the corresponding boundary conditions accepts a
basic motionless solution. To provide a non-trivial solution to the system it is
convenient to apply the curl operator (¡¬) on equation (2) and obtain an equation
which includes the vorticity, defined as ω¯¡¬V, in the form

¥ω
¥t«

ω®Ta"/#
¥V
¥z

¯Ra 9¥T¥y eW
x
®

¥T
¥x

eW
y: . (6)

It is particularly noteworthy that the vertical component of equation (6) is independent
of temperature. Then, applying the curl operator again on equation (6) and using the
property of V being solenoidal, which comes from equation (1), yields

9 ¥
¥t«

1:~#VTa"/#
¥ω
¥z

Ra 9 ¥#T
¥x ¥z

eW
x


¥#T
¥y ¥z

eW
y
®~#

H
TeW

z:¯ 0, (7)

where the horizontal Laplacian operator is defined in the form ~#
H

3 ¥#}¥x#¥#}¥y#.
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3. Linear stability analysis

The basic motionless solution is V (o)¯ω(o)¯ 0 and T (o)¯ 1®z. Assuming small
perturbations around the basic solution in the form V¯V (o)V «, T¯T (o)T «, and
ω¯ω(o)ω« and linearizing equations (7), (3) and (6) yields the following linear
system:

9 ¥
¥t«

1:~#V «Ta"/#
¥ω«
¥z

Ra 9¥#T «
¥x ¥z

eW
x


¥#T «
¥y ¥z

eW
y
®~#

H
T «eW

z:¯ 0, (8)

9χ ¥
¥t«

®~#:T «®w«¯ 0, (9)

9 ¥
¥t«

1:ω!
z
¯Ta"/#

¥w«
¥z

, (10)

where ω!
z
and w« are perturbations of the vertical component of vorticity and filtration

velocity respectively. The boundary conditions in the z-direction required for solving
equations (8), (9) and (10) are w«¯T «¯ 0 at z¯ 0 and z¯ 1. Since the layer’s
horizontal extent is infinite it would appear that there are no conditions necessary in
this direction. However, in contrast to the problem without rotation, the presence of
the axis of rotation means that it is sensible to impose symmetry conditions. It is
plausible that the conditions appropriate for small centrifugal effects are the same as
those for large centrifugal effects. A full investigation of this matter may be a suitable
topic for further study. The coupling between equations (8), (9) and (10) can be
removed by eliminating V « and ω« to provide one equation for the temperature
perturbation (or alternatively for the perturbation of vertical filtration velocity) in the
form

(9 ¥
¥t«

1:# 9χ ¥
¥t«

®~#:~#Ta 9χ ¥
¥t«

®~#: ¥#

¥z#
®Ra 9 ¥

¥t«
1:~#

H*T «¯ 0. (11)

Assuming an expansion into normal modes in the x- and y-directions, i.e.

T «¯ θ(z) exp [i(κ
x
xκ

y
y)σt«]c.c., (12)

where c.c. stands for the complex conjugate terms, and substituting it into equation
(11) provides an ordinary differential equation for θ(z) as follows:

²(σ1)# [D#®κ#®χσ] (D#®κ#)Ta [D#®κ#®χσ]D#®Ra(σ1) κ#´ θ¯ 0, (13)

where κ#¯ κ#
x
κ#

y
and D# stands for the operator d#}dz#. Equation (13) yields a

solution of the form θ¯ b
n
sin (nπz) which minimizes the Rayleigh number when

n¯ 1, indicating that θ¯ b
"
sin (πz) is the eigenfunction for marginal stability.

Substituting this result into (13) and rescaling the parameters in the form

α¯
κ#

π#

, R¯
Ra

π#

, γ¯
χ

π#

(14)

yields the following equation for the scaled Rayleigh number, R :

R¯
[1αγσ] [(σ1)#(1α)Ta]

(σ1)α
. (15)



Coriolis effect on gra�ity-dri�en con�ection 357

3.1. Stationary con�ection

For stationary convection σ in equation (12) is real and for marginal stability σ¯ 0,
therefore the corresponding characteristic values of the Rayleigh number associated
with stationary convection are obtained by substituting σ¯ 0 in equation (15) and are
presented in the form

R(st)
c

¯
(1α)#

α
Ta

(1α)

α
, (16)

where the superscript (st) denotes stationary convection. The first term in equation (16)
represents the characteristic Rayleigh number for convection in the absence of rotation
while the second term introduces the contribution of rotation. Minimizing R(st)

c
with

respect to α yields the critical wavenumber and the critical Rayleigh number for
stationary convection

α(st)
cr

¯ (Ta1)"/#, R(st)
cr

¯ [1(Ta1)"/#]#. (17)

This result is identical to the critical values presented by Palm & Tyvand (1984) and
by Friedrich (1983). To observe the effect of viscosity on stability we consider the
limiting conditions corresponding to TaU¢ associated with ΩkU¢ or νkU 0. In
particular we are interested in evaluating explicitly how the critical temperature
difference is affected by viscosity at these limiting conditions. By using the stability
condition (17) we can establish the limit as TaU¢ in the form

TaU¢ :

1

2
3

4

R(st)
cr

UTaO(Ta"/#)

α(st)
cr

UTa"/#.
(18)

Then, using the definition of the Rayleigh number and of β¯βk(T
H
®T

C
), we can

express the critical temperature difference over the porous layer as follows:

β
cr

U
4π#kkαkΩ#

$

φ#hk gk
1

νk
as TaU¢. (19)

Equation (19) shows that the critical temperature difference for fast rotating porous
domains depends on the inverse power of viscosity. This result is in contrast to the
formula for the critical temperature difference obtained in the absence of rotation
(when TaU 0) but it is in perfect agreement with the results of the corresponding
problem in pure fluids (Chandrasekhar 1961). It implies that at high rotation rates
(Taj 1) increasing the fluids’ viscosity has a destabilizing effect.

With these stability results evaluated, one can proceed to present the complete
eigenfunction solutions. For three-dimensional flow patterns corresponding to
convection rolls whose axes are parallel to the y-direction, the variation of the variables
in the y-direction vanishes, which allows the existence of a stream function, ψ, to satisfy
identically the continuity equation (1). While for an infinite layer the choice of the y-
direction is arbitrary, for a layer having a finite horizontal extent this direction is along
the shorter horizontal dimension. Note that despite the existence of a stream function
the flow is still three-dimensional and in general the component of filtration velocity in
the y-direction does not vanish. Consequently κ

y
¯ 0 and κ#¯ κ#

x
, which upon

substitution in the solution for T « and accounting for the symmetry conditions at the
axis of rotation yields for stationary convection

T «¯B cos (κx) sin (πz). (20)
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Substituting (20) into equation (9) provides the solution for w« and equations (10) and
(8) provide the solution for the vertical component of vorticity ω!

z
, and for the

horizontal components of the filtration velocity u« and �«, the latter two being

u«¯®
π(κ#π#)

κ
B sin (κx) cos (πz), (21)

�«¯
πTa"/#(κ#π#)

κ
B sin (κx) cos (πz). (22)

This solution describes convection cells which are tilted in the y-direction, forming an
angle tan−"(�«}u«) with respect to the x-axis. On this tilted plane there is no velocity
component normal to the plane, and therefore this is regarded as the oblique plane
containing the streamlines (see Veronis 1958 and Chandrasekhar 1961 for a graphical
description of the convection pattern in the oblique plane). From equations (21) and
(22) one can evaluate the ratio between the horizontal components of the filtration
velocity, in the form

�«
u«

¯®Ta"/#. (23)

This equation, upon substitution of the critical value of the wavenumber, allows the
wavenumber in the oblique plane containing streamlines to be described in the form

κ(st)
s,cr

¯ κ(st)
cr

cos [tan−"(�«}u«)]¯
π

(1Ta)"/%
. (24)

Equation (24) shows that the wavelength of the roll measured in the plane containing
the streamlines is not independent of rotation (i.e. it is a function of Taylor number),
in contrast to the corresponding problem in pure fluids (non-porous domains), where
the wavelength in the oblique plane containing the streamlines was found to be
identical to the value obtained for convection in absence of rotation (Veronis 1958).

3.2. O�erstable con�ection

For overstable convection we allow for the possibility of oscillatory motion and
therefore σ is represented in the form σ¯σ

r
iσ

i
. At the marginal stability state

σ
r
¯ 0 leaving only the imaginary part in the equation. Substituting σ¯ iσ

i
into

equations (12) and (13) and imposing the condition σ#
i
" 0, which is the requirement for

σ
i
to be real in order to get overstability possible at all, yields two algebraic equations

by requiring the imaginary and the real part of equation (13) to vanish separately. This
provides the solution for the characteristic values of the Rayleigh number and the
frequency σ

i
of the oscillations at marginal stability in the form

R(ov)
c

¯
2

α 9(1α) (1αγ)
γ#Ta

(1αγ): , (25)

σ#
i
¯

(1α®γ)Ta

(1α) (1αγ)
®1, (26)

where the superscript (o�) denotes overstable convection. At this stage it is appropriate
to mention that Chandrasekhar (1961) obtained, for the corresponding convection
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F 2. The characteristic curves representing the marginal stability limit with respect to overstable
convection for Ta¯ 2.5 and different values of γ. (The continuous curve represents the upper limit
corresponding to stationary convection.)

problem in pure fluids, a necessary condition for the existence of overstable solutions
by imposing the condition that σ#

i
" 0. Since in pure-fluids convection, the frequency

is expressed in the form σ#
i
¯ [(1®Pr)}(1Pr)] [Ta}(1α)π%]®(1α)#, it is evident

that overstability cannot be established if Pr" 1, because this implies σ#
i
! 0.

Therefore, for pure-fluids overstability becomes possible only for values of the Prandtl
number less than 1 in order to obtain real frequencies. This limits the inventory of
fluids for which convection can set in as overstability in the pure-fluids problem.
Equation (26) shows that in porous media the situation is completely different and no
straight limitation on the Prandtl number appears as a necessary condition for
overstability to set in at the convection threshold. Nevertheless, similarly to pure fluids,
a further condition relating the Prandtl number (i.e. γ for the porous-media case) to the
allowed range of values of Taylor number which permit overstability is derived from
equation (26) by imposing the condition σ#

i
" 0. The resulting inequality is expressed

in the form (1α)#(γ®Ta) (1a)γTa! 0, which in turn yields the following
condition in order to allow a range of positive values of α that accommodate over-
stable convection: 0!γ! (3®2o2)Ta cTa" 1. Subject to this condition being
fulfilled, the corresponding range of values of α which are consistent with overstable
solutions is

(Ta®γ)®(Ta#®6γTaγ#)"/#

2
! (1α)!

(Ta®γ)(Ta#®6γTaγ#)"/#

2
. (27)

Values of α lying on the boundary of the specified domain are typically consistent with
values of α and the Rayleigh number on the characteristic curve associated with
stationary convection. At these boundary values σ#

i
¯ 0 and stationary convection

takes over. The characteristic curves corresponding to Ta¯ 2.5 and plotted for
different values of γ following equation (25) are presented in figure 2. The points where
the overstable solutions branch off from the stationary convection curve are clearly
identified. The characteristic curves associated with Ta¯ 5 and Ta¯ 100 are presented
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in figures 3 and 4, respectively, in order to observe the effect of the Taylor number on
these curves.

It is worth noticing the particular case when γU 0, which deserves special interest
because it provides a lower bound for the overstable characteristic curves. Substituting
γ¯ 0 in equations (25) and (26) yields

R(ov)
c

¯
2(1α)#

α
and σ#

i
¯

Ta

(1α)
®1 for γU 0, (28)

which indicates by minimizing R(ov)
c

with respect to α that the critical overstable
Rayleigh and wavenumbers corresponding to γ¯ 0 are R(ov)

cr
¯ 8 and α(ov)

cr
¯ 1,
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F 5. The variation of the critical values of the wavenumber, in terms of α, associated with
overstable convection as a function of γ, for different values of the Taylor number.

respectively. From equation (28) it is evident that the characteristic curves for γ¯ 0 are
independent of the Taylor number. They are therefore fixed in the (R(ov)

c
,α)-plane. As

such they provide the lower limit for all characteristic curves. The associated lower
limit for the Taylor number is Ta& 2 to allow a real value for the frequency for
α(ov)
cr

¯ 1. However, this is not sufficient in order to have the instability setting in
as overstable convection. For this to occur one must require the overstable critical
Rayleigh number to be less than the corresponding stationary critical Rayleigh
number, i.e. R(ov)

cr
%R(st)

cr
. This condition implies Ta& 4(2®o2) for γ¯ 0.

The other characteristic curves corresponding to different values of γ will be located
in between the curve for γ¯ 0 and the stationary-convection characteristic curve
associated with a particular value of Ta. The critical Rayleigh numbers and
wavenumbers and the corresponding frequency are obtained by minimizing R(ov)

c
in

equation (25) with respect to α, a process which produces a quartic algebraic equation
for α(ov)

cr
in the form

α%2(γ1)α$γ(γ1)α#®2[(γ1)#γ#Ta]α®γ#(γ1)Ta®(γ1)$¯ 0. (29)

The solution to equation (29) was obtained numerically, showing that only one real
and positive root is associated with values of γ and Ta within the overstability limit.
The others are two complex-conjugate roots and another real but negative root. The
overstable critical wavenumber solution to equation (29) is presented in terms of α(ov)

cr

in figure 5, as a function of γ for different values of Ta. The curves end at a point where
no more critical values which are consistent with σ#

i
" 0 exist. For large values of γ this

limit of end points associated with σ#
i
¯ 0 can be approximated by the straight line

α(ov)
cr,max

E 2γ. By substituting the values of α(ov)
cr

into equation (25) one obtains the
critical Rayleigh number for overstability. The variation of R(ov)

cr
as a function of γ for

different values of Ta is presented in figure 6, where again the curves end at the point
where no more values consistent with σ#

i
" 0 exist. For large values of γ this limit of end

points R(ov)
cr

associated with σ#
i
¯ 0 can be approximated by the straight line R(ov)

cr,max
E

8γ. Substitution of the critical wavenumber solution into equation (26) yields the
critical value of the frequency, which is presented in terms of σ#

i,cr
in figure 7. The figure
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F 6. The variation of the critical values of the scaled Rayleigh number associated with
overstable convection as a function of γ, for different values of the Taylor number.
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F 7. The variation of the critical values of the frequency associated with overstable
convection as a function of log

"!
(γ), for different values of the Taylor number.

presents the frequency variation with log
"!

(γ) for different values of Ta. A marked
increase of the frequency with increasing Taylor number is noticed from figure 7, while
the large values of the frequency are particularly related to small values of γ, and they
decay as γ increases. As in the case when γU 0, the critical curves presented in figures
5 and 6 are not sufficient for the instability to set in as overstable convection. For this
to occur one must require the overstable critical Rayleigh number to be less than the
corresponding stationary critical Rayleigh number, i.e. R(ov)

cr
%R(st)

cr
. Although the

curves presented in figures 5 and 6 fulfil approximately this condition a more accurate
stability map is required. This is provided in figure 8 where the (γ,Ta)-plane is divided
into a zone, below the continuous curve, where the conditions are consistent with
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F 8. The stability map on the (γ,Ta)-plane showing the division of the plane into zones of
stationary and overstable convection. The dotted line represents the limit of possible overstable
convection (i.e. σ#

i
¯ 0), while the continuous curve represents the limit where stationary and

overstable convection occur at the same values of critical Rayleigh numbers, defining the
codimension-2 point (CTP).

overstable convection, and another zone, above the continuous curve, where instability
sets in as stationary convection. Below the dotted curve and above the continuous curve
overstable convection is possible but will not occur because there R(ov)

cr
"R(st)

cr
. The

dotted curve associated with σ#
i
¯ 0 can be approximated for high values of γ by the

straight line Ta¯ 6γ2.

4. Weak nonlinear analysis

For the weak nonlinear analysis it is convenient to use the definition of the stream
function in the form u¯ ¥ψ}¥z, w¯®¥ψ}¥x, and present equations (6) and (3) in
terms of the stream function and temperature, following resolution of the coupling
between the components of equation (6), as follows:

9 ¥
¥t«

1:#~#ψTa
¥#ψ
¥z#

Ra 9 ¥
¥t«

1: ¥T¥x ¯ 0, (30)

9χ ¥
¥t«

®~#:T
¥ψ
¥z

¥T
¥x

®
¥ψ
¥x

¥T
¥z

¯ 0, (31)

where here the Laplacian definition is ~#3 ¥#}¥x#¥#}¥z#.
The objective of the weak nonlinear analysis is to provide quantitative results

regarding the amplitude of convection and consequently the heat flux for both
stationary and overstable solutions. The possibility of a codimension-2 bifurcation
(Brand, Hohenberg & Steinberg 1984; Cross & Kim 1988; Scho$ pf & Zimmermann
1993) which is anticipated at the intersection between the stationary and overstable
solutions, although identified as being of significant interest for further study, is not
investigated here. For investigating the solution in the neighbourhood of a
codimension-2 point (CTP) a different expansion than the one we use is needed, which
eventually is expected to yield an amplitude differential equation which is of second
order in time.
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4.1. Expansion around stationary solutions

The stream function and temperature are expanded in terms of a small parameter ε,
defined as ε¯ [Ra}Ra

cr
®1]"/# following Newell & Whitehead (1969) and Segel (1969),

in the form

[ψ,T ]¯ [ψ(o),T (o)]ε[ψ("),T (")]ε#[ψ(#),T (#)]ε$[ψ($),T ($)]I (32)

where ψ(o)¯ 0 and T (o)¯ 1®z represent the basic motionless solution. By using the
above definition of ε, the Rayleigh number takes the form Ra¯Ra

cr
(1ε#) and we

allow time variations only at the slow time scale τ¯ ε#t« in order to prevent exponential
growth and reach finite values for the amplitude at the steady state. Slow space scales
are also introduced in the form X¯ εx, following Newell & Whitehead (1969) and
Segel (1969), in order to include a continuous finite band of horizontal modes.
Substituting the expansion (32) as well as the slow time and space scales in the
equations (30) and (31) and equating terms which consist of like powers of ε produces
a hierarchy of linear partial differential equations at each order.

At the leading order the O(ε) equations are identical to the equations solved for the
linear stability analysis, i.e.

~#ψ(")Ta
¥#ψ(")

¥z#
Ra

cr

¥T (")

¥x
¯ 0, (33a)

~#T (")®
¥ψ(")

¥x
¯ 0. (33b)

The solution at this order is given by the eigenvalues of the stationary convection

ψ(")¯ [A
"
eiκxA$

"
e−iκx] sin (πz), (34a)

T (")¯ [B
"
eiκxB$

"
e−iκx] sin (πz), (34b)

where n denotes complex conjugate terms and the amplitudes A
"
(τ,X ), A$

"
(τ,X ),

B
"
(τ,X ) and B$

"
(τ,X ) are allowed to vary over the slow time and space scales. The

relationship between the amplitudes is obtained by substituting the solutions (34a, b)
into (33a, b), as follows:

B
"
¯®

iα"/#

π(α1)
A

"
, B$

"
¯

iα"/#

π(α1)
A$

"
. (35)

The amplitudes A
"
, A$

"
remain undetermined at this stage; they will be established from

a solvability condition of the O(ε$) equations at order ε$.
At order ε# the O(ε#) equations are

~#ψ(#)Ta
¥#ψ(#)

¥z#
Ra

cr

¥T (#)

¥x
¯®2

¥
¥X

¥ψ(")

¥x
®Ra

cr

¥T (")

¥X
, (36a)

~#T (#)®
¥ψ(#)

¥x
¯®2

¥
¥X

¥T (")

¥x
®

¥ψ(")

¥X


¥ψ(")

¥z
¥T (")

¥x
®

¥ψ(")

¥x
¥T (")

¥z
, (36b)

where the right-hand side of (36a, b) represents the non-homogeneous part consisting
of terms which include the known solutions evaluated at the leading order, ε. These
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non-homogeneous terms force a particular solution in addition to the solution of the
homogeneous operator. De-coupling the equations and working out the particular
solutions yields the following complete solution at this order :

ψ(#)¯ [A
#
eiκxA$

#
e−iκx] sin (πz), (37a)

T (#)¯ [B
#
eiκxB$

#
e−iκx] sin (πz)®

α

2π(α1)
A

"
A$

"
sin (2πz), (37b)

where the relationship between the amplitudes B
#
and A

#
is identical to equation (35).

The equations at order ε$ are

~#ψ($)Ta
¥#ψ($)

¥z#
Ra

cr

¥T ($)

¥x
¯®2

¥
¥τ

(~#ψ("))®Ra
cr

¥
¥τ 0

¥T (")

¥x 1®Ra
cr

¥T (")

¥x

®
¥#ψ(")

¥X #

®2
¥

¥X
¥ψ(#)

¥x
®Ra

cr

¥T (#)

¥X
, (38a)

~#T ($)®
¥ψ($)

¥x
¯χ

¥T (")

¥τ


¥ψ(#)

¥z
¥T (")

¥x


¥ψ(")

¥z
¥T (#)

¥x
®

¥ψ(#)

¥x
¥T (")

¥z
®

¥ψ(")

¥x
¥T (#)

¥z

®2
¥

¥X
¥T (#)

¥x


¥ψ(#)

¥X
®

¥#T (")

¥X #


¥ψ(")

¥z
¥T (")

¥X
®

¥ψ(")

¥X
¥T (")

¥z
. (38b)

The right-hand side of (38a, b) consists of known solutions evaluated at orders ε and
ε# and the differential operator of the system of equations (38a, b) is identical to the
operator of the equation at order ε. Since (38a, b) at order ε$ are non-homogeneous
versions of the equations at order ε, a solvability condition for the equations at ε$ must
be satisfied. This constrains the amplitude of the solution at order ε and enables its
determination. The solvability condition is derived by de-coupling the equations and
evaluating the right-hand-side forcing functions. The relevant forcing term has the
form [A

"
exp (iκx)A$

"
exp (®iκx)] sin (πz), the others including higher harmonics of z

which do not contain the eigenfunctions corresponding to the homogeneous operator
with homogeneous boundary conditions. By imposing the condition that the coefficient
of the relevant forcing term must vanish one obtains the solvability condition in the
form of the following partial differential equation for the complex O(ε) amplitude:

η
¥A
¥t

®(1α)
¥#A
¥x#

¯
π#α#

2
[ξo

st
®AA*]A, (39)

where A¯ εA
"
, A*¯ εA$

"
, the original time and space scales are used, i.e. t¯ t«}χ, and

the following notation was introduced:

ξo
st

¯
2(α1)

α 9 R

R(st)
cr

®1: , η¯
(α1) (2®α)αγ

γ
. (40)

The slow space scales lead to the appearance of a diffusion term in the amplitude
equation. However, the imposition of the symmetry conditions at the axis of rotation
(x¯ 0) leads to the requirement A

"
¯®A$

"
, and then the O(ε) solution is reduced to

the form
ψ(")¯C

"
sin (κx) sin (πz), (41)

where C
"
¯ i2A

"
. This result satisfies the equations and all boundary conditions. A

phase angle is not involved, and a solution without slow space scales is possible. The
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diffusion term drops out of equation (39), which then transforms to the following
ordinary differential equation for the real amplitude C

"
:

η
dC

dt
¯

π#α#

8
[ξ

st
®C #]C, (42)

where C¯ εC
"
and ξ

st
¯ 4ξo

st
. Equation (42) yields the following solutions at the steady

state :

C¯
1

2
3

4

0 cR!R(st)
cr

³ξ "/#
st

cR&R(st)
cr

.
(43)

The steady amplitude solution (43) shows that a pitchfork bifurcation occurs at the
critical value of the Rayleigh number associated with stationary convection. The
relaxation time η is positive as long as γ"γ(st)

t
where

γ(st)
t

¯ (1Ta)"/#®
2

(1Ta)"/#
®1. (44)

Below this transition value of γ the relaxation time is negative and the solution decays
to the trivial value C¯ 0. The values of the Taylor number consistent with the
condition of a positive relaxation time, i.e. which yields γ(st)

t
& 0, are represented by the

condition Ta& 3. The determination of the amplitude provides the complete solution
of the stationary convection problem at order ε. The evaluation of the heat flux by
using the amplitude results from equations (39) and (43) is presented in §4.3.

4.2. Expansion around o�erstable solutions

Equations (30) and (31) are still applicable for the weak nonlinear analysis of the
overstable convection. The expansion (32) is valid as well, with the only difference that
here we refer to the corresponding critical values consistent with overstable convection.
We introduce the slow time scales τ¯ ε#t« and τ

o
¯ εt«, but allow the short time scale

t« to be present in order to represent the amplitude fluctuations. We further rescale the
short time scale in the form th ¯σ

o
t« where we used the notation σ

o
¯σ(cr)

i
. Substituting

these expansions into (30) and (31) yields at the leading order the following equations:

9σo

¥
¥th

1:#~#ψ(")Ta
¥#ψ(")

¥z#
Ra

cr 9σo

¥
¥th

1: ¥T (")

¥x
¯ 0, (45a)

9χσ
o

¥
¥th

®~#:T (")
¥ψ(")

¥x
¯ 0. (45b)

The general solution for ψ(") has the form

ψ(")¯ [A
"
ei(κx+t

h
)B

"
ei(κx−t

h
)A$

"
e−i(κx+t

h
)B$

"
e−i(κx−t

h
): sin (πz), (46)

where the amplitudes A
"
(τ

o
, τ,X ) and B

"
(τ

o
, τ,X ) describe modulations of the waves on

the slow time (τ
o
¯ εt«, τ¯ ε#t«) and space (X¯ εx) scales for a Hopf bifurcation. This

form of the solution represents travelling waves. The special cases of a pure left-
travelling wave (B

"
¯ 0) or a pure right-travelling wave (A

"
¯ 0) and of standing waves

(A
"
¯³B

"
or A

"
¯³B$

"
) can be recovered. This general solution will eventually

provide two coupled equations for the complex amplitudes (Scho$ pf & Zimmermann
1993). However, by imposing the symmetry condition at the axis of rotation at the
eigenvalues level, implying that ψ(")¯ 0 at x¯ 0, yields upon substitution in equation
(46) B$

"
¯®A

"
and B

"
¯®A$

"
. This result shows that the symmetry condition at the

origin imposes the special case of standing waves while travelling waves are excluded.
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On similar grounds as for stationary convection we can exclude the slow space scale
which prevents the appearance of a diffusion term in the amplitude equation. The
solution for the stream function at this order therefore takes the form

ψ(")¯ 2i[A
"
eit

hA$

"
e−it

h
] sin (κx) sin (πz),

T (")¯ 2[C
"
eit

hC$

"
e−it

h
] cos (κx) sin (πz), (47b)

which is similar to Steinberg & Brand (1984) for convection in a reactive mixture in a
porous medium. The relationship between the coefficients is obtained as follows:

C
"
¯®

α"/#[γσ
o
i(α1)]

π[(α1)#γ#σ#
o
]

A
"
, (48a)

C$

"
¯®

α"/#[γσ
o
®i(α1)]

π[(α1)#γ#σ#
o
]

A$

"
. (48b)

The equations at order ε# are

9σo

¥
¥th

1:#~#ψ(#)Ta
¥#ψ(#)

¥z#
Ra

cr 9σo

¥
¥th

1: ¥T (#)

¥x

¯®2
¥

¥τ
o

9σo

¥
¥th

1:~#ψ(")®Ra
cr

¥
¥τ

o

0¥T (")

¥x 1 , (49a)

9χσ
o

¥
¥th

®~#:T (#)
¥ψ(#)

¥x
¯®χ

¥T (")

¥τ
o

®
¥ψ(")

¥z
¥T (")

¥x


¥ψ(")

¥x
¥T (")

¥z
. (49b)

The solution to the system (49a, b) is the superposition of a homogeneous part and
the particular solutions arising from the non-homogeneous terms in the right-hand side
of the equations, which are known from the order-ε solutions. The homogeneous part
of the solution is similar to the solutions at order ε since the homogeneous operator is
the same. Therefore

ψ(#)
h

¯ 2i[A
#
eit

hA$

#
e−it

h
] sin (κx) sin (πz), (50a)

T (#)
h

¯ 2[C
#
eit

hC$

#
e−it

h
] cos (κx) sin (πz), (50b)

while the relationship between the coefficients is identical to equation (48). When
evaluating the right-hand side of (49a, b) in order to obtain the particular solutions, it
becomes clear that these non-homogeneous terms will produce particular solutions of
the form th sin (th ) sin (κx) sin (πz) or th cos (th ) sin (κx) sin (πz) which are secular terms in the
solution, i.e. we have a condition of resonance, unless ¥A

"
}¥τ

o
¯ 0. To avoid resonance

we obtain the particular solutions by setting ¥A
"
}¥τ

o
¯ 0. The particular solution for

the stream function vanishes, i.e. ψ(#)
p

¯ 0, and the particular solution for the
temperature is

T (#)
p

¯ [b
#
a

"
e#it

ha$

"
e−#it

h
] sin (2πz), (51)

where the coefficients b
#
, a

"
and a$

"
are related to the amplitude at order ε as follows:

b
#
¯®

α(α1)

π[(α1)#γ#σ#
o
]
A

"
A$

"
, (52a)

a
"
¯

α[2(α1)®γ#σ#
o
®iγσ

o
(α3)]

π[(α1)#γ#σ#
o
] (4γ#σ#

o
)

(A
"
)#, (52b)

a$

"
¯

α[2(α1)®γ#σ#
o
iγσ

o
(α3)]

π[(α1)#γ#σ#
o
] (4γ#σ#

o
)

(A$

"
)#. (52c)

The complete solution at this order is therefore ψ(#)¯ψ(#)
h

and T (#)¯T (#)
h

T (#)
p

.
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The equations at order ε$ were de-coupled to yield one equation for the stream
function in the form

(9χσ
o

¥
¥th

®~#: 90σo

¥
¥th

11#~#Ta
¥#

¥z#:®Ra
cr 9σo

¥
¥th

1: ¥#

¥x#
*ψ($)¯RHS, (53)

where RHS stands for the right-hand-side terms which have been evaluated from
previously known solutions at orders ε and ε#. The algebra involved in the solutions at
this order is so tedious and long that only the results will be outlined here. In principle,
in order to avoid resonant terms to appear in the solutions, the coefficients of the
corresponding forcing terms producing resonance should be set equal to 0. The two
relevant forcing terms have the form eit

h
sin (κx) sin (πz) and e−it

h
sin (κx) sin (πz), the

others including non-resonant harmonics or convection modes different to the natural
modes associated with the homogeneous operator with homogeneous boundary
conditions. Setting the coefficients of the resonant terms equal to zero yields an
equation for the unknown complex amplitude of the convection at order ε in the form

dA

dt
¯ h

#"
[ξ

ov
®h

$#
AA*]A, (54)

where A¯ εA
"
, A*¯ εA$

"
, the original time scale is used, i.e. t¯ t«}χ, and the following

notation was introduced:

ξ
ov

¯ ε#¯ 9 R

R(ov)
cr

®1: , h
#"

¯ ho

#"
im

#"
, h

$"
¯ ho

$"
im

$"
, (55)

while the definitions of h
$#

, ho

#"
,m

#"
, ho

$"
and m

$"
are

h
$#

¯
α[6(α1)γ#σ#

o
α®iγσ

o
(α3)]

(4γ#σ#
o
) [(α1)#γ#σ#

o
]

, (56a)

ho

#"
¯

π#γαR
c
sD

qD [pD(σ#
o
1) (2sDpDαR

c
γ)®αR

c
sD], (56b)

m
#"

¯®
π#γαR

c
sDσ

o

qD [2sDpDγ(σ#
o
1)αR

c
(pD

#®γ#)], (56c)

ho

$"
¯

π#γα#R
c

(4γ#σ#
o
) qD²(6pDγ#σ#

o
α) [pD(σ#

o
1) (2sDpDαR

c
γ)®αR

c
sD]

®γσ#
o
(pD2) [2sDpDγ(σ#

o
1)αR

c
(pD

#®γ#)]´, (56d )

m
$"

¯®
π#γα#R

c
σ
o

(4γ#σ#

!
)qD ²γ(pD2) [pD(σ#

o
1) (2sDpDαR

c
γ)®αR

c
sD]

(6pDγ#σ#
o
α) [2sDpDγ(σ#

o
1)αR

c
(pD

#®γ#)]´, (56e)

where pD, qD and sD are defined in the form

pD ¯(1α), sD¯(1α)#γ#σ#
o
,

qD¯σ#
o
[2sDpD(pDγ)γαR

c
(pD®γ)]#pD

# [αR
c
(pD®γ)®2sD(pD®γσ#

o
)]#.

5

6
7

8

(57)

It is convenient to present equation (54) for the complex amplitude as a set of two
equations for the absolute value of the amplitude (r¯ rAr) and its phase (θ) in the form
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F 9. Finite-amplitude results for overstable convection: variation of the nonlinear term
coefficient, ho

$#
as a function of γ for Ta¯ 60, identifying the tricritical point γ

tc
where ho

$#
changes

sign. For values of γ below the tricritical point the bifurcation is forward, while for γ"γ
tc

the
bifurcation is inverse. The value of γ were a singularity causes ho

$#
to diverge is beyond the

overstability limit, i.e. it occurs always at γ"γ
max

.

A¯ r eiθ, A*¯ r e−iθ (58)
with AA*¯ r# and

ho

"#

dr

dt
¯ [ξ

ov
®ho

$#
r#] r, (59)

dθ

dt
¯m

#"
ξ
ov

®m
$"

r#, (60)

where ho

"#
¯ 1}ho

#"
and ho

$#
¯ ho

$"
}ho

#"
. The sign of the coefficient of the nonlinear term,

i.e. ho

$#
indicates whether the bifurcation is forward or inverse. When ho

$#
" 0 the

bifurcation is forward while a negative value of ho

$#
suggests an inverse bifurcation. The

point where ho

$#
changes sign is identified as the (non-equilibrium) tricritical point

(because of the many similarities the present problem shares with thermodynamic
equilibrium phase transitions). Calculating ho

$#
over the parameter domain considered

yields a graphical pattern as presented in figure 9, for Ta¯ 60. For this value of the
Taylor number, the maximum allowed value of γ which is consistent with overstable
convection (i.e. with σ#

o
& 0) is γ

max
¯ 9.92. Therefore, from figure 9 one observes that

the bifurcation is forward (i.e. ho

$#
" 0) for most of the parameter domain, i.e. for γ!

γ
tc
, where γ

tc
is the value of γ at the tricritical point, and becomes inverse for γ

tc
!γ

!γ
max

, actually in the neighbourhood of the codimension-2 point (CTP) but not
exactly at the CTP. In general ho

$#
changes sign again via a singularity, however this is

always beyond the overstability limit. Actually there is at least another zero of ho

$#
at

very high values of γ which is also not relevant to the problem because it happens
outside the overstability domain (i.e. at γ"γ

max
). The general behaviour of ho

$#
is the

same for all values of Ta considered, except for the location of the tricritical point. For
the case presented in figure 9 (corresponding to Ta¯ 60) the tricritical point γ

tc
is

below γ
max

. This, however, is not the case for all values of Ta. The location of γ
tc

and
γ
max

as a function Ta is presented in figure 10. From the figure it is evident that there
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F 10. Finite-amplitude results for overstable convection: Maximum and tricritical values of γ
as a function of Taylor number. The inset shows the detail of their intersection where γ

tc
¯γ

max
¯γV

and Ta¯TaV. For Taylor numbers above TaV : γ
tc
!γ

max
, while for Taylor numbers below TaV :

γ
tc
"γ

max
.

is a value of the Taylor number, say TaV (and its corresponding value of γ, say γV)
above which γ

tc
!γ

max
and below it γ

tc
"γ

max
(at Ta¯TaV, γ

tc
¯γ

max
¯γV). The

importance of this transition value of Taylor number is that for Ta!TaV the
bifurcation is forward for the whole domain of overstability. This transition value
of Taylor number was evaluated as TaV¯ 21.3 and its corresponding value of γ is
γV¯ 3.596 (see detail as the inset of figure 10). The relaxation time ho

"#
is always

positive in the parameter domain considered.
Equation (59) yields at the post-transient state r#¯ ho

#$
ξ
ov

for supercritical values of
R, where ho

#$
¯ 1}ho

$#
, providing the solution for r in the form

r¯
1

2
3

4

0 cR!R(ov)
cr

³[ho

#$
ξ
ov

]"/# cR&R(ov)
cr

.
(61)

Therefore the post-transient amplitude solution is

A¯ r exp (iθd t)¯³(ho

#$
ξ
ov

)"/# exp (iθd t), (62)

where the nonlinear frequency correction, θd , is obtained by substituting the
corresponding solution of r# in equation (60) and is

θd ¯dθ}dt¯ (m
#"

®m
$"

ho

#$
) ξ

ov
. (63)

It is evident from equations (62) and (47) that a Hopf bifurcation occurs at the critical
value of the Rayleigh number associated with overstable convection. The post-
transient values of rAr as presented in equation (61) were evaluated in terms of
log

"!
[rAr}ε] and are presented graphically in figure 11 as a function of γ, for different

values of the Taylor number. From the figure, one observes that the solutions diverge
as the value of γ approaches the tricritical point. As this happens in the neighbourhood
of the CTP a different expansion is needed to investigate the solution there, because the
divergence of the amplitude violates the assumptions made regarding the amplitude
expansion.
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F 11. Finite-amplitude results for overstable convection: post-transient amplitude as a
function of γ for different values of the Taylor number.
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F 12. Finite-amplitude results for overstable convection: post-transient nonlinear frequency
correction as a function of γ for different values of the Taylor number.

The post-transient values of the nonlinear frequency correction were evaluated using
equation (63) in terms of log

"!
[θd}ξ

ov
] and are presented in figure 12 as a function of γ

for different Taylor numbers. It can be observed that the nonlinear frequency
correction diverges as γUγ

tc
. It is also observed from figure 12 that, for values of γ

which are not small, the frequency correction decreases as the Taylor number increases
at the same value of γ.

During the linear stability analysis of overstable solutions the particular case when
γU 0 was identified as worth noticing because it produced critical values of Rayleigh
numbers and wavenumbers which are independent of Ta (see equation (28) and the text
following it). It is of interest to discuss this particular case in the context of the weak
nonlinear results as well. Calculating the limit of the coefficients in the amplitude
equations (59) and (60) yields the following results : ho

$#
U 3}4, m

#"
¯m

$"
U 0 and ho

"#
¯

(1}π#γ)U¢ as γU 0. These results provide a post-transient amplitude and frequency
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correction of rArU 2ε}o3 and θd U 0 as γU 0. The value of ho

"#
indicates that the

relaxation time diverges as γU 0. Nevertheless, one can conclude that for sufficiently
small values of γ (γi 1) the overstable solution oscillates at the neutral frequency
(Ta}2®1)"/# having a post-transient amplitude of rArE 2ε}o3. The time needed to
reach the post-transient state is obviously very long, i.e. O(γ−"). The corresponding
heat flux associated with small values of γ is discussed in the next subsection.

4.3. Heat flux and Nusselt number

This section is dedicated to estimate the heat flux in terms of the Nusselt number for
both stationary and overstable convection by using the evaluated amplitude results.
The mean Nusselt number is defined as

Nu¯
1

l &
l

!

[wT®¥T}¥z] dx, (64)

where l is the length of the domain and can be taken as the cell wavelength. However,
since

¥
¥z&

l

!

0wT®
¥T
¥z1dx¯ 0 (65)

it means that the Nusselt number is not a function of z and therefore can be evaluated
for convenience at z¯ 0 where w¯ 0.

Substituting the solutions for stationary convection at the different orders after
eliminating the slow space scale on the grounds presented in §4.1 yields the following
relationship for the stationary convection Nusselt number at steady state :

Nu(st)¯ 12 9 R

R(st)
cr

®1:O(ε$) cR&R(st)
cr

, (66)

where it is obvious that Nu(st)¯ 1cR!R (st)
cr

, indicating that the convection heat
transfer branches off from the conductive heat transfer line (which is parallel to the
R}R(st)

cr
axis) at the critical value of the Rayleigh number. The gradient of the

supercritical Nusselt number in the (Nu(st),R}R(st)
cr

)-plane has the value of 2. As
the critical Rayleigh number for convection in the absence of rotation is smaller than
the corresponding Rayleigh number associated with rotation, it can be concluded that
as far as stationary convection is concerned the rotation has a retarding effect on heat
transfer.

Regarding the heat flux corresponding to overstable convection the Nusselt number
is evaluated similarly as for stationary convection with the only difference that here a
time average over a cycle is performed as well and therefore the mean Nusselt number
has the meaning of average in space as well as in time. To order ε# this yields for the
post-transient state

Nu(ov)¯ 1
2α(α1) ho

#$

π[(α1)#γ#σ#
o
] 9

R

R(ov)
cr

®1:O(ε$) cR&R(ov)
cr

, (67)

where ho

#$
¯ 1}ho

$#
, ho

$#
¯ ho

$"
}ho

#"
and ho

#"
, ho

$"
are as defined by (56b) and (56d ),

respectively. The variation of Nusselt number as a function of γ was evaluated for
different values of the Taylor number and is presented in figure 13, in terms of
log

"!
(Nu(ov)®1)}ξ

ov
. We can observe from the figure that for most of the γ-domain the

heat flux at a constant value of γ decreases as the Taylor number increases, indicating
that the rotation has a retarding effect on heat transfer for overstable convection as
well. Nevertheless, this pattern changes for small values of γ, but not necessarily too
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F 13. Heat transfer results for overstable convection: post-transient Nusselt number as a
function of γ for different values of the Taylor number.

small. As the intersection between the curves does not occur at the same value of γ it
is difficult to provide an accurate transition point. Nevertheless, it is evident that for
small values of γ rotation can enhance the heat transfer.

The particular case of sufficiently small values of γ(γi 1) was evaluated for the limit
γU 0 and provides a mean Nusselt number of Nu(ov)E 14ε#}3πO(ε$), which is
independent of the rotation parameter Ta.

5. Summary and conclusions

The linear stability results indicate that in contrast to the corresponding pure-fluids
(non-porous domains) problem, the convection problem in porous media subject to
rotation allows overstable solutions without limiting the Prandtl number. In the
porous-media problem we find also that the critical wavenumber in the plane
containing the streamlines for stationary convection is not independent of rotation, a
result which is also distinct from the corresponding case in pure fluids. However, just
as in pure-fluids convection, the viscosity in porous-media convection at high rotation
rates has a destabilizing effect. The finite-amplitude results show that a pitchfork
bifurcation occurs for the stationary convection case and a Hopf bifurcation for the
overstable convection, at the corresponding critical values of the Rayleigh number.
The finite-amplitude results are used to evaluate the convective heat flux. Although for
both stationary and overstable convection the rotation has in general a retarding effect
on heat transfer (except for small γ values when overstable convection can enhance the
heat transfer), in the stationary convection case this is due only to the fact that
instability and convection occurs at a higher Rayleigh number than for the case
without rotation. To observe this interesting result we look at the limits of R(st)

cr
and α(st)

cr

as the Taylor number approaches infinity or zero. The limit for TaU¢ is presented
in equation (18), i.e. R(st)

cr
UTaO(Ta"/#) and α(st)

cr
UTa"/# as TaU¢, while the

corresponding limit for Ta¯ 0 is R(st)
cr

¯ 4 and α(st)
cr

¯ 1 as TaU 0. Substituting these
limiting values in the steady-state amplitude solutions yields εC (")¯
o2[8(R}R(st)

cr
®1)]"/# for TaU 0 and εC (")¯ 1[8(R}R(st)

cr
®1)]"/# for TaU¢. Therefore,

for the same relative distance from the corresponding value of R(st)
cr

, there is a 29%
reduction in the amplitude from 1.41 to 1 as Taylor number increases from 0
(corresponding to convection in the absence of rotation) to infinity. Nevertheless,
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substituting the same limiting values in the expression for the Nusselt number as a
function of amplitude, i.e. Nu(st)¯ 1α(st)

cr
(εC

"
)#}4(α(st)

cr
1), provides exactly the same

result for both TaU¢ and TaU 0, as presented in equation (66). This is so because of
the corresponding variation of the critical wavenumber as a function of Ta, a fact
which counter-balances the significant reduction of amplitude and its impact on the
heat transfer. For overstable convection it was demonstrated that the heat transfer
reduction (when the values of γ are not small) is due not only to the stabilizing effect
of rotation but also to the fact that for supercritical Rayleigh number values at the
same γ value, increasing the rotation rate reduces the heat transfer coefficient. For
small values of γ the rotation has an enhancing effect on heat transfer leading to the
limiting value of Nu(ov)¯ 14ε#}3π for γi 1, which is the same for all Taylor
numbers.

The work described in this paper was partially supported by the Foundation for
Research Development through the Competitive Industry Research Grant (CIPM-
GUN2034039).
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